An Effective A

Software Obf

D

Yu-Jye Tung
@yujyet

broach o

Jscation

VWhat Is Software Obfuscation?

A software protection mechanism through program transformation
(source-level, compilation-level, or binary-level) that...

* makes the corresponding executable binary more difficult to analyze

* without changing program’s core functionalities (intended observable behaviors).

Notable aside: compilation-
level transformation is the
most flexible of the 3.

Collberg. A Taxonomy of Obfuscating Transformations. 1997.

Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs. 1998.

VWhat Is Software Obfuscation?

A software protection mechanism through program transformation
(source-level, compilation-level, or binary-level) that...

* makes the corresponding executable binary more difficult to analyze

* without changing program’s core functionalities (intgsfled observdble behaviors).

Notable aside: compilation-
level transformation is the
most flexible of the 3.

In respect to the
transformation's potency,
resilience, and stealth.

Analysis is performed by the
reverse engineering process.

Collberg. A Taxonomy of Obfuscating Transformations. 1997.

Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs. 1998.

More Definitions... @

Potency: strength of transformation against manual analysis
Resilience: strength of transformation against automated analysis

Stealth: strength of transformation against initial detection

radare?
BinaryNinja

Manual Analysis

More Definitions... @

Potency: strength of transformation against manual analysis
Resilience: strength of transformation against automated analysis

Stealth: strength of transformation against initial detection

25
M Fal) s
i i 70 n
% BINSEC 1%e}...
% <
<BaRe®

BinaryAnalysisPlatform / bap Automated Analysis

More Definitions...

i BINSEC

binsec@ddcd8df6e@b8:~/connect$ binsec -bw -bw-opaque -bw-k 18 anagram_ollvm

[bw:info] Checking all predicates in anagram_ollvm for opacity

[disasm:info] Using section until 8064801

[disasm:result] Linear disassembly from 080483b0 to 08048e01

[bw:result] Predicate jbe 0x8048419 @ 0x080483fd is opaque
(then: clear; else: opaque)

[bw:result] Predicate jz 0x8048419 @ 0x08048406 is opaque
(then: opaque; else: opaque)

[bw:result] Predicate jz 0x8048453 @ 0x08048436 is opaque
(then: clear; else: opaque)

[bw:result] Predicate jz 0x8048453 @ 0x0804843f is opaque

(then: opaque; else: opaque)

More Definitions... @

Potency: strength of transformation against manual analysis
Resilience: strength of transformation against automated analysis

Stealth: strength of transformation against initial detection

'j Initial Detection

Software Obfuscation 1= Cryptography

The protection offered by software obfuscation does not have the same
mathematical guarantee as cryptography.

In other words, the strength of transformation’s potency, resilience, and
stealth can be reduced.

VWhat Is Software Obfuscation?

A software protection mechanism through program transformation
(source-level, compilation-level, or binary-level) that...

* makes the corresponding executable binary more difficult to analyze

* without changing program’s core functionalities (intgsfled observdble behaviors).

Notable aside: compilation-
level transformation is the
most flexible of the 3.

In respect to the
transformation's potency,
resilience, and stealth.

Analysis is performed by the
reverse engineering process.

Collberg. A Taxonomy of Obfuscating Transformations. 1997.

Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs. 1998.

VWhat Is Software Obfuscation?

A software protection mechanism through program transformation
(source-level, compilation-level, or binary-level) that...

* makes the corresponding executable binary more éiffieett to analyze

* without changing program’s core functionalities (intgsfled observdble behaviors).

Notable aside: compilation-
level transformation is the ti me-COnsuming Analysis is performed by the

most flexible of the 3. reverse engineering process

Collberg. A Taxonomy of Obfuscating Transformations. 1997.

Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque
Constructs. 1998.

The "Time-Consuming” Aspect

A transformation's potency, resilience, and stealth combine to ultimately
answer this question: how much more time-consuming did the
transformation makes it for reverse engineering?

End goal: make analysts give up.

More time
consuming

More frustrating for
the analysts

The "Time-Consuming” Aspect

A transformation's potency, resilience, and stealth combine to ultimately
answer this question: how much more time-consuming did the
transformation makes it for reverse engineering?

End goal: make analysts give up.

More time
consuming

More frustrating for
the analysts

Deobfuscation Process

1. ldentifying the obfuscation technique (stealth)

2. Performing the relevant deobfuscation steps (potency, resilience)

Fffects Of Modern Obfuscation

1. ldentifying the obfuscation technique (stealth)

2. Performingthe relevant deobfuscation steps (potency, resilience)

Notable Examples:
* Control-flow graph flattening
* Virtualization obfuscation

Stealth is ignored!

>

Modern Obtfuscation = Noisy!

1. Easy to identify
(low stealth)

Control-Flow Graph (CFG) Flattening: Theory

Control-Flow Graph (CFG): representation of a function's disassembly
(instructions) where program flow is also represented.

0804847f Ox0 {var_2c}
08048481 Ox0 {var_30}
08048483 f ptrace
08048488 esp, 0x10
0804848b dword [ebp-0xc {var_14}], eax
0804848e dword [ebp-0xc {var_14}], 0Ox0O
08048492 0x80484ae
- 000000
v y
080484ae esp, Oxc 08048494 esp, Oxc
080484b1 0x804855d {var_30} {'"not being traced"} 08048497 0x8048550 {var_30} {'being traced"}
080484b6 puts 0804849c puts
080484bb esp, 0x10 080484al esp, 0x10
080484be eax, Ox0 080484a4 esp, Oxc
080484c3 ecx, dword [ebp-0x4 {var_c}] 080484a7 Ox1 {var_30}
080484c6 {__saved_ebp} 080484a9 exit
080484c7 esp, [ecx-0x4] { Does not return }
080484ca

Control-Flow Graph (CFG) Flattening: Theory

Control-Flow Graph (CFG): representation of a function's disassembly
(instructions) where program flow is also represented.

080484ae
080484b1
080484b6
080484bb
080484be
080484c3
080484c6
080484c7
080484ca

0804847f
08048481
08048483
08048488
0804848b
0804848e
08048492

A

.

esp, Oxc

Ox0 {var_2c}
Ox0 {var_30}
ptrace

esp, 0x10

Why is CFG representation helpful?

dword [ebp-0xc {var_14}], eax
dword [ebp-0xc {var_14}], 0Ox0O

Ox80484ae

L

08048494

0x804855d {var_30} {"not being traced"} 08048497

puts

esp, 0x10

eax, Ox0O

ecx, dword [ebp-0x4 {var_c}]
{__saved_ebp}

esp, [ecx-0x4]

0804849c
080484al
080484a4
080484a7
080484a9

esp, Oxc

0x8048550 {var_30} {'being traced"}
puts

esp, 0x10

esp, Oxc

Ox1 {var_30}

exit

{ Does not return }

Control-Flow Graph (CFG) Flattening: Theory

Control-Flow Graph (CFG): representation of a function's disassembly

(instructions) where program flow is also represented.
Why is CFG representation helpful?

Control-flow graph increases disassembly's glance value.

For example, one can recognize high-level programming constructs (e.g,
if/while/for/switch statements) by just a quick glance of the disassembly.

Control-Flow Graph (CFG) Flattening: Theory

The dispatcher (in black) decides

Turn every CFGinto a
which original basic block to execute

CFG with that shape.

next.
\ | /
- Control-flow graph flattening removes
- the increased glanced value the CFG

| . representation provides, such as:

* shapes indicating high-level

Example CFG. programming constructs

 spatial locality of basic blocks
assists cognitive reasoning on the

B~ & L-_'"
r—
r-". ."-..

Jscrambler. Jscrambler 101 — Control Flow Flattening. 2017. . .
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening/ semantics of a dBaSSGmb'Y

sequence

Control-Flow Graph (CFG) Flattening: Theory

Turn every CFGinto a The dispatcher (in black) decides
CFG with that shape. which original basic block to execute

next.

Low Stealth!

Jscrambler. Jscrambler 101 — Control Flow Flattening. 2017.
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening/

Modern Obfuscation = Noisy!

1. Easy to identify
(low stealth)

But it doesn't matter if deobfuscation takes a long time, right!

Real-world implementations leave behind distinctive footprints
to allow for ad-hoc approaches to deobfuscation.

Control-Flow Graph Flattening: OLLVM

Prologue

An original basic block will always end with
— _ — setting a local variable to a constant

% E corresponding to the next original basic block
o = | the dispatcher needs to execute.

Main dispatcher

Sub dispatchers — i

: ' . I Quarkslab. Deobfuscation: Recovering An OLLVM-Protected Program.
EL,C%)

2014.
Relevant blocks — i E\—l_[_l_‘

https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-
Predispatcher protected-program.html

Control-Flow Graph Flattening: OLLVM

Prologue

An original basic block will always end with

Main diopatcher = . setting a local variable to a constant

% E corresponding to the next original basic block
o = | the dispatcher needs to execute.
st et o =1 Figuring out the constant corresponding

to these basic blocks allow us to
reconstruct original CFG

' | [. Quarkslab. Deobfuscation: Recovering An OLLVM-Protected Program.
EL,C%]

2014.
Relevant blocks —| https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-
Predispatcher p rotected-p rogra m. html

Solution

Instead of focusing on making the obfuscation technigue harder to break
(potency, resilience), also focusing on making it harder to identify (stealth).

Respect each property that makes up the "time-consuming” aspect.

What's More Frustrating?

* Understanding what the problem is
but not how to solve it

What's More Frustrating?

GO gle deobfuscating control-flow graph flattening Q,

Q Al =) Images [E News] Videos e Shopping ¢ More Settings Tools

* Understanding what the problem is
but not how to solve it?

About 6,120 results (0.24 seconds)

Control flow flattening aims to obscure the control flow logic of a program by
“flattening” the control flow graph so that all basic blocks appear to have the
same set of pre- decessors and successors. The actual control flow during
execution is guided by a dispatcher variable.

Deobfuscation - University of Arizona

Google! If there're solutions online that e A
solve similar problems, learn the | | O smarea e st
Deobfuscation: recovering an OLLVM-protected program

https://blog.quarkslab.com » deobfuscation-recovering-an-ollvm-protected... ~
general approach to tackle that
problem

https://github.com/obfuscator-llvm/obfuscator/wiki/Control-Flow-Flattening.

How to deal with heavy control flow flattening? - Reverse ...
https://reverseengineering.stackexchange.com » questions > how-to-deal-w... v

1 answer

Mar 21, 2018 - One would have to look at the code. How are the jump targets calculated? From
your diagrams it could also be something as simple as:

What is a "control-flow flattening" obfuscation technique ...
https://reverseengineering.stackexchange.com » questions > what-is-a-contr... ~
2 answers

For a good example of this obfuscation, check Apple's FairPlay code, e.g. iTunes or iOS libs.
Here's a typical graph of a function which had this obfuscation ...

What's More Frustrating?

* Not understanding or even aware
what the problem is?

What's More Frustrating?

* Not understanding or even aware
what the problem is?

Inconspicuous Obfuscation

f analysts aren't aware of what was obfuscated, it makes them...

1. Make the wrong assumptions about what the code is doing

2. Falling deeper into the rabbit hole (aka reversing hell)

Inconspicuous Obfuscation

f analysts aren't aware of what was obfuscated, it makes them...

1. Make the wrong assumptions about what the code is doing

2. Falling deeper into the rabbit hole (aka reversing hell)

Only stealth (not potency or resilience) can achieve this!

Inconspicuous Obfuscation: Example

The Return of Disassembly Desynchronization

github.com/yellowbyte/analysis-of-anti-analysis

Summary: VWe take advantage of the assumption IDA Pro makes to detect
opague predicates to create even stealthier opague predicates.

Stealth is important too!

Disassembly

Desynchronization

An umbrella term for software obfuscation technigues whose main goal is
to degrade the accuracy of the retrieved disassembly.

.text:08049376
108049378
108049378
:0804937E
108049386
108049383
108049389
:0804938B ;

.text
text
+LEXTL
.text
.text
< CEXT
.text

jz
mov
cmp

short loc_8049396

eax, [ebp+var_28]

eax, [ebp+var_24]

short loc_8604938B

eax, [ebp+var_28]
[ebp+var_88], eax

short near ptr loc_8649399+2

--- Inaccurate

:08049388B
:0804938B
:0804938B
:0804938E
108049394
108049396

; CODE XREF: main+ES53T1 j

cax, [ebprvar_24] Disassembly

[ebp+var_88], eax
short near ptr loc_8049399+2

108049396
108049396
108049396
108049398

loc_8049396:

; CODE XREF: main+E4BT j
al, bl
eax

Opaque Predicates

Definition; Conditional branches that are always true or false. One of their
branches is unreachable so junk bytes (data bytes) can be inserted.

Predicate always evaluate to True

"Opaque
Predicates"”

| ——

Junk Bytes

Opaqgue Predicates

_ Vector35/ OpaquePredicatePatcher
ugan B ‘ N S E C
08 @

Can both branches be executed?

"Opaque
Predicates"”

| ——

Junk Bytes

Opaqgue Predicates

Since identifying opague predicates is non-trivial, IDA Pro takes a heuristic-
based approach to identify them.

Predicate always evaluate to True

"Opaque
Predicates"”

| ——

Junk Bytes

Opaqgue Predicates

Initial Detection: If IDA Pro detects overlapped instructions in sibling basic
blocks, it will assume the conditional branch is an opaque predicate.

Predicate always evaluate to True

Basic Block A

Basic Block B and
Basic Block C are
— 1 siblings.

j—
Basic Block B Basic Block C

Opaqgue Predicates

Initial Detection: If IDA Pro detects overlapped instructions in sibling basic
blocks, it will assume the conditional branch is an opaque predicate.

Predicate always evaluate to True

Basic Block B and
Basic Block C are

—— : siblings.
31 CO xoreax, eax B8 31 COD1C8 moveax, CBD1C031h

D1 C8 roreax 1 C3 retn
C3 retn

Opaqgue Predicates

Leaking Assumption: It will always assume an opaque predicate looks like
this:

|IDA Pro can detect Predicate always evaluate to True

"Opaque
Predicates"”

| ——

Junk Bytes

Opaqgue Predicates

But an opaque predicate can also look like this:

|IDA Pro cannot detect Predicate always evaluate to False

"Opaque
Predicates"”

P - — |

Junk Bytes

Hiding Genuine Instruction: Displayed

culprit: ; CODE XREF: _startip
Xor eax, eax
Jnz short not_jmp
db OBS8h
; CODE XREF: .text:08048082+t73
Xor eax, eax
ror eax, 1
retn

IDA's disassembly of the culprit function shows that it
will return O when in reality it returns a nonzero value.

Hiding Genuine Instruction: Displayed

When IDA detects sibling basic blocks with overlapped instructions, it will
assume that the opaqgue predicate looks like this:

Predicate always evaluate to True

"Opaque
Predicates"”

| ——

Junk Bytes

Hiding Genuine Instruction: Displayed

But our example opaque predicate instead looks like this:

Predicate always evaluate to False

"Opaque
Predicates"”

e — —1

Junk Bytes

Hiding Genuine Instruction: Displayed

Xor
Jnz

Set eax to 0. Set ZERO flagto 1

Will never branch to "not_jmp"
because ZERO flagis always set

DE XREF: _startip
eax, eax
short not_jmp

db OES8h

N ot disassembled due to overlap

Xor
ror
retn

; CODE XREF: .text:080480821%]
eax, eax

IDA's disassembly of the culprit function shows that it
will return O but at runtime it returns a nonzero value.

Hiding Genuine Instruction: Displayed

; CODE XREF: _startip
eax, eax
short not_jmp

; CODE XREF: .text:080480821%]

IDA's disassembly of the culprit function shows that it
will return O but at runtime it returns a nonzero value.

Hiding Genuine Instruction: Executed

culprit:

loc_8048084:

Xor
jnz

mov
retn

eax,

; CODE XREF: _startip
eax

short near ptr loc_8048084+1

eax,

; CODE XREF: .text:080480821]
0C8D1CO031h

Parent function of culprit can display convoluted
behaviors if culprit returns O to confuse a reverser.

Main Takeaway

In implementing obfuscation, try to respect each property that makes up
the "time-consuming" aspect!
Potency

Time-Consuming

Resilience Stealth

