
An Effective Approach To 
Software Obfuscation

Yu-Jye Tung 

@yujyet



What Is Software Obfuscation?

A software protection mechanism through program transformation 
(source-level, compilation-level, or binary-level) that…

• makes the corresponding executable binary more difficult to analyze

• without changing program’s core functionalities (intended observable behaviors).

Collberg. A Taxonomy of Obfuscating Transformations. 1997.
Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque 
Constructs. 1998.

Notable aside: compilation-

level transformation is the 

most flexible of the 3.



A software protection mechanism through program transformation 
(source-level, compilation-level, or binary-level) that…

• makes the corresponding executable binary more difficult to analyze

• without changing program’s core functionalities (intended observable behaviors).

What Is Software Obfuscation?

In respect to the 

transformation's potency, 

resilience, and stealth.

Analysis is performed by the 

reverse engineering process.

Collberg. A Taxonomy of Obfuscating Transformations. 1997.
Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque 
Constructs. 1998.

Notable aside: compilation-

level transformation is the 

most flexible of the 3.



More Definitions... 

Potency: strength of transformation against manual analysis

Resilience: strength of transformation against automated analysis

Stealth: strength of transformation against initial detection

Manual Analysis

radare2

IDA Pro

Ghidra

BinaryNinja

GDB



More Definitions... 

Automated Analysis

Angr

B2R2

Potency: strength of transformation against manual analysis

Resilience: strength of transformation against automated analysis

Stealth: strength of transformation against initial detection



More Definitions...



More Definitions... 

Initial Detection

Potency: strength of transformation against manual analysis

Resilience: strength of transformation against automated analysis

Stealth: strength of transformation against initial detection



Software Obfuscation != Cryptography

The protection offered by software obfuscation does not have the same 
mathematical guarantee as cryptography.

In other words, the strength of transformation's potency, resilience, and 
stealth can be reduced.



A software protection mechanism through program transformation 
(source-level, compilation-level, or binary-level) that…

• makes the corresponding executable binary more difficult to analyze

• without changing program’s core functionalities (intended observable behaviors).

What Is Software Obfuscation?

In respect to the 

transformation's potency, 

resilience, and stealth.

Analysis is performed by the 

reverse engineering process.

Collberg. A Taxonomy of Obfuscating Transformations. 1997.
Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque 
Constructs. 1998.

Notable aside: compilation-

level transformation is the 

most flexible of the 3.



A software protection mechanism through program transformation 
(source-level, compilation-level, or binary-level) that…

• makes the corresponding executable binary more difficult to analyze

• without changing program’s core functionalities (intended observable behaviors).

What Is Software Obfuscation?

time-consuming Analysis is performed by the 

reverse engineering process

Collberg. A Taxonomy of Obfuscating Transformations. 1997.
Collberg. Manufacturing Cheap, Resilient, and Stealthy Opaque 
Constructs. 1998.

Notable aside: compilation-

level transformation is the 

most flexible of the 3.



The "Time-Consuming" Aspect

A transformation's potency, resilience, and stealth combine to ultimately 
answer this question: how much more time-consuming did the 
transformation makes it for reverse engineering?

End goal: make analysts give up.

More time 

consuming

==

More frustrating for 

the analysts



The "Time-Consuming" Aspect

A transformation's potency, resilience, and stealth combine to ultimately 
answer this question: how much more time-consuming did the 
transformation makes it for reverse engineering?

End goal: make analysts give up.

More time 

consuming

==

More frustrating for 

the analysts



Deobfuscation Process

1. Identifying the obfuscation technique (stealth)

2. Performing the relevant deobfuscation steps (potency, resilience)



Effects Of Modern Obfuscation

1. Identifying the obfuscation technique (stealth)

2. Performing the relevant deobfuscation steps (potency, resilience)

Notable Examples:

• Control-flow graph flattening

• Virtualization obfuscation
Stealth is ignored!



Modern Obfuscation = Noisy!

1. Easy to identify

(low stealth)



Control-Flow Graph (CFG) Flattening: Theory

Control-Flow Graph (CFG): representation of a function's disassembly 
(instructions) where program flow is also represented.



Control-Flow Graph (CFG) Flattening: Theory

Control-Flow Graph (CFG): representation of a function's disassembly 
(instructions) where program flow is also represented.

Why is CFG representation helpful?



Control-Flow Graph (CFG) Flattening: Theory

Control-Flow Graph (CFG): representation of a function's disassembly 
(instructions) where program flow is also represented.

Control-flow graph increases disassembly's glance value.

For example, one can recognize high-level programming constructs (e.g., 
if/while/for/switch statements) by just a quick glance of the disassembly.

Why is CFG representation helpful?



Control-Flow Graph (CFG) Flattening: Theory

Jscrambler. Jscrambler 101 – Control Flow Flattening. 2017. 
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening/

Turn every CFG into a 

CFG with that shape.

Control-flow graph flattening removes 

the increased glanced value the CFG 

representation provides, such as:

• shapes indicating high-level 

programming constructs

• spatial locality of basic blocks 

assists cognitive reasoning on the 

semantics of a disassembly 

sequence

The dispatcher (in black) decides 

which original basic block to execute 

next.

Example CFG.



Control-Flow Graph (CFG) Flattening: Theory

Jscrambler. Jscrambler 101 – Control Flow Flattening. 2017. 
https://blog.jscrambler.com/jscrambler-101-control-flow-flattening/

Turn every CFG into a 

CFG with that shape.

The dispatcher (in black) decides 

which original basic block to execute 

next.

Low Stealth!



Modern Obfuscation = Noisy!

1. Easy to identify

(low stealth)

But it doesn't matter if deobfuscation takes a long time, right?

Real-world implementations leave behind distinctive footprints

to allow for ad-hoc approaches to deobfuscation.



Control-Flow Graph Flattening: OLLVM

Quarkslab. Deobfuscation: Recovering An OLLVM-Protected Program.
2014.
https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-
protected-program.html

An original basic block will always end with 

setting a local variable to a constant 

corresponding to the next original basic block 

the dispatcher needs to execute.



Control-Flow Graph Flattening: OLLVM

Quarkslab. Deobfuscation: Recovering An OLLVM-Protected Program.
2014.
https://blog.quarkslab.com/deobfuscation-recovering-an-ollvm-
protected-program.html

An original basic block will always end with 

setting a local variable to a constant 

corresponding to the next original basic block 

the dispatcher needs to execute.

Figuring out the constant corresponding 

to these basic blocks allow us to 

reconstruct original CFG



Solution

Instead of focusing on making the obfuscation technique harder to break 
(potency, resilience), also focusing on making it harder to identify (stealth).

Respect each property that makes up the "time-consuming" aspect.



What’s More Frustrating?

• Understanding what the problem is 
but not how to solve it?



What’s More Frustrating?

• Understanding what the problem is 
but not how to solve it?

Google? If there’re solutions online that 
solve similar problems, learn the 
general approach to tackle that 
problem



What’s More Frustrating?

• Not understanding or even aware 
what the problem is?



What’s More Frustrating?

• Not understanding or even aware 
what the problem is? 



Inconspicuous Obfuscation

If analysts aren't aware of what was obfuscated, it makes them...

1. Make the wrong assumptions about what the code is doing

2. Falling deeper into the rabbit hole (aka reversing hell)



Inconspicuous Obfuscation

If analysts aren't aware of what was obfuscated, it makes them...

1. Make the wrong assumptions about what the code is doing

2. Falling deeper into the rabbit hole (aka reversing hell)

Only stealth (not potency or resilience) can achieve this!



Inconspicuous Obfuscation: Example

The Return of Disassembly Desynchronization

Summary: We take advantage of the assumption IDA Pro makes to detect 
opaque predicates to create even stealthier opaque predicates.

github.com/yellowbyte/analysis-of-anti-analysis

Stealth is important too!



Disassembly Desynchronization

An umbrella term for software obfuscation techniques whose main goal is 
to degrade the accuracy of the retrieved disassembly.

Inaccurate 

Disassembly



Opaque Predicates

Definition: Conditional branches that are always true or false. One of their 
branches is unreachable so junk bytes (data bytes) can be inserted.

Junk Bytes

"Opaque 

Predicates"

Predicate always evaluate to True



Opaque Predicates

"Opaque 

Predicates"

Can both branches be executed?

Junk Bytes



Opaque Predicates

Since identifying opaque predicates is non-trivial, IDA Pro takes a heuristic-
based approach to identify them.

Junk Bytes

Predicate always evaluate to True

"Opaque 

Predicates"



Opaque Predicates

Initial Detection: If IDA Pro detects overlapped instructions in sibling basic 
blocks, it will assume the conditional branch is an opaque predicate.

Basic Block A

Predicate always evaluate to True

Basic Block B and 

Basic Block C are 

siblings.

Basic Block B Basic Block C



Opaque Predicates

Initial Detection: If IDA Pro detects overlapped instructions in sibling basic 
blocks, it will assume the conditional branch is an opaque predicate.

Predicate always evaluate to True

Basic Block B and 

Basic Block C are 

siblings.
B8 31 C0 D1 C8 mov eax, C8D1C031h

C3 retn

31 C0 xor eax, eax

D1 C8 ror eax, 1

C3 retn



Opaque Predicates

Leaking Assumption: It will always assume an opaque predicate looks like 
this:

Junk Bytes

Predicate always evaluate to True

"Opaque 

Predicates"

IDA Pro can detect



Opaque Predicates

But an opaque predicate can also look like this: 

Junk Bytes

Predicate always evaluate to False

"Opaque 

Predicates"

IDA Pro cannot detect



Hiding Genuine Instruction: Displayed

IDA's disassembly of the culprit function shows that it 

will return 0 when in reality it returns a nonzero value.



Hiding Genuine Instruction: Displayed

When IDA detects sibling basic blocks with overlapped instructions, it will 
assume that the opaque predicate looks like this:

Junk Bytes

Predicate always evaluate to True

"Opaque 

Predicates"



Hiding Genuine Instruction: Displayed

But our example opaque predicate instead looks like this: 

Predicate always evaluate to False

"Opaque 

Predicates"

Junk Bytes



Hiding Genuine Instruction: Displayed

IDA's disassembly of the culprit function shows that it 

will return 0 but at runtime it returns a nonzero value.

Set eax to 0. Set ZERO flag to 1

Will never branch to "not_jmp" 

because ZERO flag is always set

Set eax to 0

Not disassembled due to overlap



Hiding Genuine Instruction: Displayed

IDA's disassembly of the culprit function shows that it 

will return 0 but at runtime it returns a nonzero value.

Authentic instructions starts here!



Hiding Genuine Instruction: Executed

Parent function of culprit can display convoluted 

behaviors if culprit returns 0 to confuse a reverser.



Main Takeaway

In implementing obfuscation, try to respect each property that makes up 
the "time-consuming" aspect!

Resilience

Potency

Stealth

Time-Consuming


